Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present a tomographic imaging technique for the D‐region electron density using a set of spatially distributed very low frequency (VLF) remote sensing measurements. The D‐region ionosphere plays a critical role in many long‐range and over‐the‐horizon communication systems; however, it is unreachable by most direct measurement techniques such as balloons and satellites. Fortunately, the D region, combined with Earth's surface, forms what is known as the Earth‐Ionosphere waveguide allowing VLF and low frequency (LF) radio waves to propagate to global distances. By measuring these signals, we can estimate a path measurement of the electron density, which we assume to be a path‐averaged electron density profile of the D region. In this work, we use path‐averaged inferences from lightning‐generated radio atmospherics (sferics) with a tomographic inversion to produce 3D models of electron density over the Southeastern United States and the Gulf of Mexico. The model begins with two‐dimensional great circle path observations, each of which is parameterized so it includes vertical profile information. The tomography is then solved in two dimensions (latitude and longitude) at arbitrarily many altitude slices to construct the 3D electron density. We examine the model's performance in the synthetic case and determine that we have an expected percent error better than 10% within our area of interest. We apply our model to the 2017 “Great American Solar Eclipse” and find a clear relationship between sunlight percentage and electron density at different altitudes.more » « less
-
The D region of the ionosphere (60-90 km) is very important for a variety of radio science applications. It is utilized in important applications as it reflects Very Low Frequency (VLF, 3-30 kHz) waves, ranging from navigation to communication to lighting geolocation. However, despite the large body of D region applications and research, we still know relatively little about the underlying structure. This is in large part due to the difficulty of making direct measurements, which is why many workers have utilized the same VLF waves to perform remote sensing studies. However, noticeably absent in the field, is a thorough study which attempts to recover a map of the D region. We describe possible methods to utilize the broadband VLF emissions from lightning and a receiver network to obtain a 2D ionospheric map using methods from Compressed Sensing (CS) and Computed Tomography (CT).more » « less
-
Abstract The growing depth and breadth of data spanning the solar‐terrestrial environment requires new ways of representing and analyzing the available information. This paper applies one such new data representation—network analysis—to the study of Geomagnetically Induced Currents (GICs) in electric power lines. This work uses newly available electric current data collected by power utilities through the the Electric Power Research Institute (EPRI) SUNBURST project and magnetometer data from the Super Magnetometer Initiative. The magnetometer data are analyzed using wavelet analysis. This new analysis method shows deviations to be more likely for equatorial stations close to water, which may be caused by the coast effect. The deviation likelihood is a complex function of latitude and magnetic local time. The GIC data are analyzed using “Quiet Day Curves” (QDCs) which help isolate geomagnetic disturbances. We find that current deviations are more common in the early morning sector, but this trend differs from station to station. These current and magnetometer data are represented in a network as nodes which are connected when both the current and magnetic measurements have a statistically significant deviation from their baseline behavior. This network is used to study the link between space weather and GICs. To do this, times when a current deviation exists are compared to times when magnetic deviations exist for each magnetometer ‐ current sensor pair. Current deviations are, on average, 1.83 times more likely when there are magnetic deviations. However, some magnetometer deviations are more indicative than others, with the strongest probability multipliers reaching 3.more » « less
-
Abstract Geomagnetically induced currents (GICs) at middle latitudes have received increased attention after reported power grid disruptions due to geomagnetic disturbances. However, quantifying the risk to the electric power grid at middle latitudes is difficult without understanding how the GIC sensors respond to geomagnetic activity on a daily basis. Therefore, in this study the question “Do measured GICs have distinguishable and quantifiable long‐period and short‐period characteristics?” is addressed. The study focuses on the long‐term variability of measured GIC, and establishes the extent to which the variability relates to quiet‐time geomagnetic activity. GIC quiet‐day curves (QDCs) are computed from measured data for each GIC node, covering all four seasons, and then compared with the seasonal variability of thermosphere‐ionosphere‐electrodynamics general circulation model (TIE‐GCM)‐simulated neutral wind and height‐integrated current density. The results show strong evidence that the middle‐latitude nodes routinely respond to the tidal‐driven Sq variation, with a local time and seasonal dependence on the direction of the ionospheric currents, which is specific to each node. The strong dependence of GICs on the Sq currents demonstrates that the GIC QDCs may be employed as a robust baseline from which to quantify the significance of GICs during geomagnetically active times and to isolate those variations to study independently. The QDC‐based significance score computed in this study provides power utilities with a node‐specific measure of the geomagnetic significance of a given GIC observation. Finally, this study shows that the power grid acts as a giant sensor that may detect ionospheric current systems.more » « less
An official website of the United States government

Full Text Available